Benefits and Drawbacks for the Use of -Dominance in Evolutionary Multi-Objective Optimization
نویسندگان
چکیده
Using diversity mechanisms in evolutionary algorithms for multi-objective optimization problems is considered as an important issue for the design of successful algorithms. This is in particular the case for problems where the number of non-dominated feasible objective vectors is exponential with respect to the problem size. In this case the goal is to compute a good approximation of the Pareto front. We investigate how this goal can be achieved by using the diversity mechanism of ε-dominance and point out where this concept is provably helpful to obtain a good approximation of an exponentially large Pareto front in expected polynomial time. Afterwards, we consider the drawbacks of this approach and point out situations where the use of ε-dominance slows down the optimization process significantly.
منابع مشابه
Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Benefits and Drawbacks for the Use of ε-Dominance in Evolutionary Multi-Objective Optimization
Using diversity mechanisms in evolutionary algorithms for multi-objective optimization problems is considered as an important issue for the design of successful algorithms. This is in particular the case for problems where the number of non-dominated feasible objective vectors is exponential with respect to the problem size. In this case the goal is to compute a good approximation of the Pareto...
متن کاملBenefits and Drawbacks for the Use of ǫ-Dominance in Evolutionary Multi-Objective Optimization
Using diversity mechanisms in evolutionary algorithms for multi-objective optimization problems is considered as an important issue for the design of successful algorithms. This is in particular the case for problems where the number of non-dominated feasible objective vectors is exponential with respect to the problem size. In this case the goal is to compute a good approximation of the Pareto...
متن کاملA New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملAn Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کامل